85 research outputs found

    Zwitterionic ceramics for biomedical applications

    Get PDF
    Bioceramics for bone tissue regeneration, local drug delivery and nanomedicine, are receiving growing attention by the biomaterials scientific community. The design of bioceramics with improved surface properties able to overcome clinical issues is a great scientific challenge. Zwitterionization of surfaces has arisen as a powerful alternative in the design of biocompatible bioceramics capable to inhibit bacterial and non-specific protein adsorption, which opens up new insights into the biomedical applications of these materials. This manuscript reviews the different approaches reported up to date for the synthesis and characterization of zwitterionic bioceramics with potential clinical applications. Statement of Significance Zwitterionic bioceramics are receiving growing attention by the biomaterials scientific community due to their great potential in bone tissue regeneration, local drug delivery and nanomedicines. Herein, the different strategies developed so far to synthesize and characterize zwitterionic bioceramics with potential clinical applications are summarized. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights

    Get PDF
    This manuscript reviews the recent progress on mesoporous silica nanoparticles as drug delivery systems. Their intrinsic structural, textural and chemical features permit to design versatile multifunctional nanosystems with the capability to target the diseased tissue and release the cargo on demand upon exposition to internal or external stimuli. The degradation rate of these nanocarriers in diverse physiological fluids is overviewed obeying their significance for their potential translation towards clinical applications. To conclude, the balance between the benefits and downsides of this revolutionary nanotechnological tool is also discussed

    Preventing bacterial adhesion on scaffolds for bone tissue engineering

    Get PDF
    Bone implant infection constitutes a major sanitary concern which is associated to high morbidity and health costs. This manuscript focused on overviewing the main research efforts committed up to date to develop innovative alternatives to conventional treatments, such as those with antibiotics. These strategies mainly rely on chemical modifi-cations of the surface of biomaterials, such as providing it of zwitterionic nature, and tailoring the nanostructure surface of metal implants. These surface modifications have successfully allowed inhibition of bacterial adhesion, which is the first step to implant infection, and preventing long-term biofilm formation compared to pristine materials. These strate-gies could be easily applied to provide three-dimensional (3D) scaffolds based on bioceramics and metals, of which its manufacture using rapid prototyping techniques was reviewed. This opens the gates for the design and development of advanced 3D scaffolds for bone tissue engineering to prevent bone implant infections. Keywords: Antibacterial adhesion, biofilm formation, zwitterionic surfaces, nanostructured surfaces, rapid prototyping 3D scaffolds, bone tissue engineering

    Amine-Functionalized Mesoporous Silica Nanoparticles: A New Nanoantibiotic for Bone Infection Treatment

    Get PDF
    This manuscript reports an effective new alternative for the management of bone infection by the 5 development of an antibiotic nanocarrier able to penetrate bacterial biofilm, thus enhancing antimicrobial effectiveness. This nanosystem, also denoted as “nanoantibiotic”, consists in mesoporous silica nanoparticles (MSNs) loaded with an antimicrobial agent (levofloxacin, LEVO) 10 and externally functionalized with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (DAMO) as targeting agent. This amine functionalization provides MSNs of positive charges, which improves the affinity towards the negatively charged bacteria wall and biofilm. Physical and 15 chemical properties of the nanoantibiotic were studied using different characterization techniques, including Xray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption porosimetry, elemental chemical analysis, dynamic light scattering (DLS), zeta (� )-potential 20 and solid-state nuclear magnetic resonance (NMR). “In vial” LEVO release profiles and the in vitro antimicrobial effectiveness of the different released doses were investigated. The efficacy of the nanoantibiotic against a S. aureus biofilm was also determined, showing the practically total 25 destruction of the biofilmdue to the high penetration ability of the developed nanosystem. These findings open up promising expectations in the field of bone infection treatment

    Tuning mesoporous silica dissolution in physiological environments: a review

    Get PDF
    Matrix degradation has a major impact on the release kinetics of drug delivery systems. Regarding ordered mesoporous silica materials for biomedical applications, their dissolution is an important parameter that should be taken into consideration. In this paper, we review the main factors that govern the mesoporous silica dissolution in physiological environments. We also provide the necessary knowledge to researchers in the area for tuning the dissolution rate of those matrices, so the degradation could be controlled and the material behaviour optimised

    Nanostructured Mesoporous Silicas for Bone Tissue Regeneration

    Get PDF
    The research on the development of new biomaterials that promote bone tissue regeneration is receiving great interest by the biomedical scientific community. Recent advances in nanotechnology have allowed the design of materials with nanostructure similar to that of natural bone. These materials can promote new bone formation by inducing the formation of nanocrystalline apatites analogous to the mineral phase of natural bone onto their surfaces, i.e. they are bioactive. They also stimulate osteoblast proliferation and differentiation and, therefore, accelerate the healing processes. Silica-based ordered mesoporous materials are excellent candidates to be used as third generation bioceramics that enable the adsorption and local control release of biological active agents that promote bone regeneration. This local delivery capability together with the bioactive behavior of mesoporous silicas opens up promising expectations in the bioclinical field. In this review, the last advances in nanochemistry aimed at designing and tailoring the chemical and textural properties of mesoporous silicas for biomedical applications are described. The recent developed strategies to synthesize bioactive glasses with ordered mesopore arrangements are also summarized. Finally, a deep discussion about the influence of the textural parameters and organic modification of mesoporous silicas on molecules adsorption and controlled release is performed

    3D scaffold with effective multidrug sequential release against bacteria biofilm

    Get PDF
    Bone infection is a feared complication following surgery or trauma that remains as an extremely difficult disease to deal with. So far, the outcome of therapy could be improved with the design of 3D implants, which combine the merits of osseous regeneration and local multidrug therapy so as to avoid bacterial growth, drug resistance and the feared side effects. Herein, hierarchical 3D multidrug scaffolds based on nanocomposite bioceramic and polyvinyl alcohol (PVA) prepared by rapid prototyping with an external coating of gelatin-glutaraldehyde (Gel-Glu) have been fabricated. These 3D scaffolds contain three antimicrobial agents (rifampin, levofloxacin and vancomycin), which have been localized in different compartments of the scaffold to obtain different release kinetics and more effective combined therapy. Levofloxacin was loaded into the mesopores of nanocomposite bioceramic part, vancomycin was localized into PVA biopolymer part and rifampin was loaded in the external coating of Gel-Glu. The obtained results show an early and fast release of rifampin followed by sustained and prolonged release of vancomycin and levofloxacin, respectively, which are mainly governed by the progressive in vitro degradability rate of these scaffolds. This combined therapy is able to destroy Gram-positive and Gram-negative bacteria biofilms as well as inhibit the bacteria growth; in addition, these multifunctional scaffolds exhibit excellent bioactivity as well as good biocompatibility with complete cell colonization of preosteoblast in the entire surface, ensuring good bone regeneration. These findings suggest that these hierarchical 3D multidrug scaffolds are promising candidates as platforms for local bone infection therapy

    Nanomaterials as promising alternative in the infection treatment

    Get PDF
    Both the prevalence of antibiotic resistance and the increased biofilm-associated infections are boosting the demand for new advanced and more effective treatment for such infections. In this sense, nanotechnology offers a ground-breaking platform for addressing this challenge. This review shows the current progress in the field of antimicrobial inorganic-based nanomaterials and their activity against bacteria and bacterial biofilm. Herein, nanomaterials preventing the bacteria adhesion and nanomaterials treating the infection once formed are presented through a classification based on their functionality. To fight infection, nanoparticles with inherent antibacterial activity and nanoparticles acting as nanovehicles are described, emphasizing the design of the carrier nanosystems with targeting properties towards the bacteria and the biofilm
    • …
    corecore